
International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 1963
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Smart Offline Application Intrusion Monitoring
System
Pranav John Issac

Abstract— Hackers and malware affect applications by changing the crucial files to extract critical data such as credit card information,

bank passwords, etc. from users without user’s knowledge. This is done by changing critical files of the applications such as chrome by the

Trojan or backdoors. Existing systems like antivirus, anti-malwares and prevention systems does not detect new attack since the database

have to be updated using attack patterns that are generated by the antivirus vendors after analyzing the attack. The antivirus vendors only

analyses popular virus. Such localized attacks are undetected by antivirus vendors. The proposed system detects these unauthorized

changes to the application files in real-time using a smart file signature that is generated from md5, modification time and name. The pro-

posed system monitors applications regularly and reports any unauthorized changes to file structure, informing user of threat in Real time

instead of waiting for antivirus update and also detect corrupt files.

Index Terms— File Intrusion Monitoring System, Offline Intrusion detection, SHA, MD5, Realtime File protection from corruption, hacker
prevention , realtime application blocking.

—————————— ——————————

1 INTRODUCTION

he existing system of antivirus scan uses general attack
and known signature for application intrusion detection.
The disadvantage with this are that hackers’ attacks are

unique and undetectable to Antivirus and existing systems
does not monitor any behavioural changes in file system. The
usual antivirus contains a global file signature database with
unique file signature for most common virus. In certain cases,
when a new threat is detected the antivirus checks only for
the global database thus leaving the local ones unnoticed.
But these changes that go unnoticed can affect the critical
files and can extract the data stealthily. Thus, we could say
that antivirus cannot protect the files and applications com-
pletely.

 The changes that went unnoticed and noticed with the ex-
isting system can be detected by the proposed system; any
unauthorized changes to critical files are notified and the re-
spective application is blocked and thus prevents hacking or
data leak. The advantages of our proposed system are: Re-
porting of corrupted files and continuous monitoring of file
systems. The system creates a unique smart file signature that
could even identify the slightest change made to the critical
files of the application. The smart file signatures generated
are stored into a database and are compared each time the
application gets started and periodically without affecting the

system performance. In case of any mismatch found the user
will be notified and the corresponding applicaiton would be
blocked from further execution. A daemon module present
would always be there running in the background, scanning
and reporting in realtime.
 Proposed system detects above discussed unauthorized
changes using a smart file signature usually generated from
size, md5, modification time, access time and name. Unlike
the existing system no Global database signature needed.
Even the slightest change made to the path or content of the
file can result in the mismatch of signature leading to block-
ing its further execution thus preventing the least possible
way for a hacker to intrude.

 This paper is divided into 5 chapters , Chaper 1 is the in-
troduction , Chapter 2 deals with the design of the system,
Chapter 3 explains the implementation details, Chapter 4 pre-
sents the results of implementation and Chapter 5 concludes
the paper.

2 DESIGN OF THE INTRUSION MONITORING SYSTEM
2.1 Development Requirement.
 It is generally accepted that majority of virus affects Windows
users and most of the commercial users tends to use Windows
operating system. Thus, the system is primarily focused for win-
dows operating system. Due to nativity with windows the pro-
gramming language that is recommended for the system is C#
and the database for signature management is lightweight
MySQL. The targeted .NET framework is 4.5.1. For a more plat-
form independent version C# can be replaced with java, but it is
recommended to use C# for Windows operating system.

T

————————————————
• Pranav John Issac is currently researching in Application security and

smart Hacking prevention, India, PH-+918129311475.
E-mail: pranavjohnissac@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 1964
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

2.2 System Requirement
 Since the system access all critical files, highest administra-

tive previleage is recommended. The recommended operating
system is Windows 7 and above. The system should have
atleast 1 GB RAM and a dual core processor with atleast
1GHZ clock speed. Internet is required only if application
build updates.

2.3 Design
The system consists of a start up and a daemon module, the
startup module starts as a Windows service and self scans the
application itself and activates the daemon module which will
continuously scan, detect and block intrusion and application.
 Second one is the interface and configuration module
which deals with the different operations that user requests,
such as manual scan, application addition, scan interval set-
ting, removal of application, regeneration of file signature,
manually blocking application, pause/resume scan and per-
form build updates.
 The third module is the signature generation module
which calculates the unique SMART signature for each of the
application to be monitored using a combination of size, md5,
modification time, access time and name
The algorithm for signature generation of an application is as
follows can be described as follows:

1. First critical file list of the selected application is gener-
ated.

2. For a file, the MD5 is generated
3. The MD5, last modified time, path , size, etc are con-

verted to string and concatenated.
4. SHA256 for the string is calculated. This is the unique

signature
5. The whole process is repeated for each of the files.

Generated signatures are stored to a smart signature database.

 Finally, the last module is scanning and detection module
which scans the files for any changes made to its critical files
(which include .exe, .ini, .dll, .inf ,.xml ,pma files) of the appli-
cation. The algorithm is as follows

1. For an application the critical files currently in the app
folder is fetched.

2. The stored signature for the application is fetched from
DB.

3. If the number of files mismatch, the application is
blocked.

4. Else each file’s signature is generated and
matchedwith that in the smart signature database. If
these signatures do not match then the application is
blocked by adding the app to blocked app list .

5. After blocking an alert notification is sent to the user
indicating that the critical file has undergone some
changes and the current system application enters
“blocked” status.

All the actions are tracked. Once all these steps are com-
pleted for one application the next application can be added
for the scan.
The blocking module is a daemon thread which continuously
watch currently running application. If a blocked application
is being executed, it is blocked.
 Figure 1. shows the the database structure,

3 IMPLEMENTATION IN WINDOWS

 There are 5 modules namely, Startup Module, Daemon
module, Interface and configuration module, Signature Gen-
eration Module, Scanning and detection modules. Each are
explained below

 3.1 Startup Module
The start up module gets automatically invoked when the sys-
tem starts. This module is registered as a service in operating

Fig. 1. Database structure for the application

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 1965
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

system. This is done by adding the SMART file intrusion ap-
plication to the task scheduler of the windows operating sys-
tem. The service is registered as follows:

 “sc.exe create SmartIntrusionbinPath= \”” +
AppDomain.CurrentDomain. BaseDirectory + “app.exe\”
start=auto”;

The above code can be explained as the windows contains a
“sc” executable file. The filename to be added to the registry is
given as an argument using the sc create statement followed
by the binpath.
On executing it in the command prompt the application is
added as a service to the OS.
This module performs self analysis of all the applications us-
ing scanning and detection module. It also regularly checks for
updates. The module starts the database service and activate
the daemon module. All the applications which are already
added to the scanned list will be automatically scanned for
errors and updates.
The module finally exits after the scan activating the interface
module in background.
 Figure 2. shows the data flow diagram for the above dis-
cussed matter.

 3.2 Daemon Module

 The module is essentially a low priority daemon thread
which performs 2 funtions which are blocking of blocked ap-
plication from starting up and scanning monitored files for
changes using scanning module. The module schedules the
scanning process and shut down running application. This
module can be paused using the interface module. The DFD
for this module is given in Fig 3.

 3.3 Interface and Configuration Module

 It’s the one that handles the user communication part of the
application. The operations are taken from the user to this
module for further procedures or processing. From here the
process takes lead to scanning and detection module and then
to signature generation module from there.
The module provides interface for the following operations:

1. Changing settings

2. Manage Exclusions

3. Updating

4. Application addition

5. Pausing Scan.

6. Reset Database

7. Regeneration

8. Manually Perform scans.

Fig 4. shows the dataflow diagram of the module.

 3.4 Signature Generation Module

 The signature generation module is responsible for generat-
ing smart file signature based on the attributes such as path,
modification time, md5 and name of the file. Generated smart
signature is stored in a signature database along with its path.
Further when an application is explicitly given for scanning, a
signature for the current file is generated which is then com-
pared with the signature in the database. If at all a mismatch is
found after the comparison a notification is given to the user.

Fig 2. DFD for Startup Module

Fig 3. DFD for Daemon Module

Fig 4. DFD for Interface and configuration Module

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 1966
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

The signature generation module is incorporated with func-
tions to get the file path, calculate the hash function using Se-
cure Hash Algorithm 1(SHA-1) and calculate the MD5. The
process is described in the design section.

The DFD for the module is in Fig 5.

 3.5 Scanning and detection

 This module scan files for each application as invoked by
daemon module. For each application, there are sub-files and
critical files (.dll, .exe, .ini, .inf extension files). The smart sig-
nature generated for each sub-file is stored in database. The
current signature is then compared with the smart signature
stored in database. If they are not matched, the current appli-
cation enters “blocked” status. Otherwise, it continues with
the “active” status. The actions made after the comparison is
stored in the database by a function HandleMalware. It also
reports to the user if the signature mismatches. If the change is
desired by the user then, it is considered as a volatile file and
added to exclusion. If not, it uploads the signature to the serv-
er and blocks application from running. Get the next file to be
scanned and repeat this process until daemon module stops.
Figure 6 shows working of scanning and detection module

4 RESULTS
 The proposed system was implemented using C# and .NET
4.5.2 and MariaDB. The application found out to be effective
most of the time. The resource usage was considerably low.
The only disadvantage observed was that the application file
signatures had to be re generated automatically each time an
application is updated by the vendor.

5 CONCLUSIONS
 In conclusion the application is provides offline protection
to files and application that are added for monitoring from
hackers, malwares and corruption. Even though the imple-
mentation was targeted on windows based Operating systems,
the same can be implemented for any operating system using
most effective native programming languages. The advantage
of the system over other existing prevention systems is that
the proposed system operates offline and is targeted to specif-
ic application. The future scopes may include an online signa-
ture database that automatically ignores the genuine files after
the vendor update.

REFERENCES
[1] Alok Kumar Kasgar, “A Review Paper of Message Digest 5 (MD5),”

International Journal of Modern Engineering & Management Re-
search Volume 1, Issue 4, December 2013 ISSN: 2320-9984 (Online)

[2] R. Rivest. The MD5 Message-Digest Algorithm [rfc1321]

[3] Tao Xie and Dengguo Feng (30 May 2009). “How to Find Weak Input

Differences for MD5 Collision Attack”.
[4] Raaed K. Ibrahim, Ali SH. Hussain, Roula A. Kadhim “IMPLEMEN-

TATION OF SECURE HASH ALGORITHM SHA-1 BY LABVIEW”
IJCSMC, Vol. 4, Issue. 3, March 2015, pg.61 – 67

[5] X. &. L. G. Chan, Discussion of One Improved Hash Algorithm Based
on MD5 and SHA1, San Francisco, USA: World Congress on Engi-
neering and Computer Science (WCECS), 2007

Fig 5. DFD for Signature Generation Module

Fig 5. DFD for Scanning and detection module

IJSER

http://www.ijser.org/

	1 Introduction
	2 Design of the intrusion monitoring system
	2.1 Development Requirement.
	2.2 System Requirement
	2.3 Design

	3 Implementation in Windows
	3.1 Startup Module
	3.2 Daemon Module
	3.3 Interface and Configuration Module
	3.4 Signature Generation Module
	3.5 Scanning and detection

	4 Results
	5 CONCLUSIONS
	References

